Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
821 lines
22 KiB
821 lines
22 KiB
// Copyright 2009 The Go Authors. All rights reserved. |
|
// Copyright (c) 2015 Klaus Post |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
package flate |
|
|
|
import ( |
|
"fmt" |
|
"io" |
|
"math" |
|
) |
|
|
|
const ( |
|
NoCompression = 0 |
|
BestSpeed = 1 |
|
BestCompression = 9 |
|
DefaultCompression = -1 |
|
|
|
// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman |
|
// entropy encoding. This mode is useful in compressing data that has |
|
// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4) |
|
// that lacks an entropy encoder. Compression gains are achieved when |
|
// certain bytes in the input stream occur more frequently than others. |
|
// |
|
// Note that HuffmanOnly produces a compressed output that is |
|
// RFC 1951 compliant. That is, any valid DEFLATE decompressor will |
|
// continue to be able to decompress this output. |
|
HuffmanOnly = -2 |
|
ConstantCompression = HuffmanOnly // compatibility alias. |
|
|
|
logWindowSize = 15 |
|
windowSize = 1 << logWindowSize |
|
windowMask = windowSize - 1 |
|
logMaxOffsetSize = 15 // Standard DEFLATE |
|
minMatchLength = 4 // The smallest match that the compressor looks for |
|
maxMatchLength = 258 // The longest match for the compressor |
|
minOffsetSize = 1 // The shortest offset that makes any sense |
|
|
|
// The maximum number of tokens we put into a single flat block, just too |
|
// stop things from getting too large. |
|
maxFlateBlockTokens = 1 << 14 |
|
maxStoreBlockSize = 65535 |
|
hashBits = 17 // After 17 performance degrades |
|
hashSize = 1 << hashBits |
|
hashMask = (1 << hashBits) - 1 |
|
hashShift = (hashBits + minMatchLength - 1) / minMatchLength |
|
maxHashOffset = 1 << 24 |
|
|
|
skipNever = math.MaxInt32 |
|
|
|
debugDeflate = false |
|
) |
|
|
|
type compressionLevel struct { |
|
good, lazy, nice, chain, fastSkipHashing, level int |
|
} |
|
|
|
// Compression levels have been rebalanced from zlib deflate defaults |
|
// to give a bigger spread in speed and compression. |
|
// See https://blog.klauspost.com/rebalancing-deflate-compression-levels/ |
|
var levels = []compressionLevel{ |
|
{}, // 0 |
|
// Level 1-6 uses specialized algorithm - values not used |
|
{0, 0, 0, 0, 0, 1}, |
|
{0, 0, 0, 0, 0, 2}, |
|
{0, 0, 0, 0, 0, 3}, |
|
{0, 0, 0, 0, 0, 4}, |
|
{0, 0, 0, 0, 0, 5}, |
|
{0, 0, 0, 0, 0, 6}, |
|
// Levels 7-9 use increasingly more lazy matching |
|
// and increasingly stringent conditions for "good enough". |
|
{8, 8, 24, 16, skipNever, 7}, |
|
{10, 16, 24, 64, skipNever, 8}, |
|
{32, 258, 258, 4096, skipNever, 9}, |
|
} |
|
|
|
// advancedState contains state for the advanced levels, with bigger hash tables, etc. |
|
type advancedState struct { |
|
// deflate state |
|
length int |
|
offset int |
|
maxInsertIndex int |
|
|
|
// Input hash chains |
|
// hashHead[hashValue] contains the largest inputIndex with the specified hash value |
|
// If hashHead[hashValue] is within the current window, then |
|
// hashPrev[hashHead[hashValue] & windowMask] contains the previous index |
|
// with the same hash value. |
|
chainHead int |
|
hashHead [hashSize]uint32 |
|
hashPrev [windowSize]uint32 |
|
hashOffset int |
|
|
|
// input window: unprocessed data is window[index:windowEnd] |
|
index int |
|
hashMatch [maxMatchLength + minMatchLength]uint32 |
|
|
|
hash uint32 |
|
ii uint16 // position of last match, intended to overflow to reset. |
|
} |
|
|
|
type compressor struct { |
|
compressionLevel |
|
|
|
w *huffmanBitWriter |
|
|
|
// compression algorithm |
|
fill func(*compressor, []byte) int // copy data to window |
|
step func(*compressor) // process window |
|
|
|
window []byte |
|
windowEnd int |
|
blockStart int // window index where current tokens start |
|
err error |
|
|
|
// queued output tokens |
|
tokens tokens |
|
fast fastEnc |
|
state *advancedState |
|
|
|
sync bool // requesting flush |
|
byteAvailable bool // if true, still need to process window[index-1]. |
|
} |
|
|
|
func (d *compressor) fillDeflate(b []byte) int { |
|
s := d.state |
|
if s.index >= 2*windowSize-(minMatchLength+maxMatchLength) { |
|
// shift the window by windowSize |
|
copy(d.window[:], d.window[windowSize:2*windowSize]) |
|
s.index -= windowSize |
|
d.windowEnd -= windowSize |
|
if d.blockStart >= windowSize { |
|
d.blockStart -= windowSize |
|
} else { |
|
d.blockStart = math.MaxInt32 |
|
} |
|
s.hashOffset += windowSize |
|
if s.hashOffset > maxHashOffset { |
|
delta := s.hashOffset - 1 |
|
s.hashOffset -= delta |
|
s.chainHead -= delta |
|
// Iterate over slices instead of arrays to avoid copying |
|
// the entire table onto the stack (Issue #18625). |
|
for i, v := range s.hashPrev[:] { |
|
if int(v) > delta { |
|
s.hashPrev[i] = uint32(int(v) - delta) |
|
} else { |
|
s.hashPrev[i] = 0 |
|
} |
|
} |
|
for i, v := range s.hashHead[:] { |
|
if int(v) > delta { |
|
s.hashHead[i] = uint32(int(v) - delta) |
|
} else { |
|
s.hashHead[i] = 0 |
|
} |
|
} |
|
} |
|
} |
|
n := copy(d.window[d.windowEnd:], b) |
|
d.windowEnd += n |
|
return n |
|
} |
|
|
|
func (d *compressor) writeBlock(tok *tokens, index int, eof bool) error { |
|
if index > 0 || eof { |
|
var window []byte |
|
if d.blockStart <= index { |
|
window = d.window[d.blockStart:index] |
|
} |
|
d.blockStart = index |
|
d.w.writeBlock(tok, eof, window) |
|
return d.w.err |
|
} |
|
return nil |
|
} |
|
|
|
// writeBlockSkip writes the current block and uses the number of tokens |
|
// to determine if the block should be stored on no matches, or |
|
// only huffman encoded. |
|
func (d *compressor) writeBlockSkip(tok *tokens, index int, eof bool) error { |
|
if index > 0 || eof { |
|
if d.blockStart <= index { |
|
window := d.window[d.blockStart:index] |
|
// If we removed less than a 64th of all literals |
|
// we huffman compress the block. |
|
if int(tok.n) > len(window)-int(tok.n>>6) { |
|
d.w.writeBlockHuff(eof, window, d.sync) |
|
} else { |
|
// Write a dynamic huffman block. |
|
d.w.writeBlockDynamic(tok, eof, window, d.sync) |
|
} |
|
} else { |
|
d.w.writeBlock(tok, eof, nil) |
|
} |
|
d.blockStart = index |
|
return d.w.err |
|
} |
|
return nil |
|
} |
|
|
|
// fillWindow will fill the current window with the supplied |
|
// dictionary and calculate all hashes. |
|
// This is much faster than doing a full encode. |
|
// Should only be used after a start/reset. |
|
func (d *compressor) fillWindow(b []byte) { |
|
// Do not fill window if we are in store-only or huffman mode. |
|
if d.level <= 0 { |
|
return |
|
} |
|
if d.fast != nil { |
|
// encode the last data, but discard the result |
|
if len(b) > maxMatchOffset { |
|
b = b[len(b)-maxMatchOffset:] |
|
} |
|
d.fast.Encode(&d.tokens, b) |
|
d.tokens.Reset() |
|
return |
|
} |
|
s := d.state |
|
// If we are given too much, cut it. |
|
if len(b) > windowSize { |
|
b = b[len(b)-windowSize:] |
|
} |
|
// Add all to window. |
|
n := copy(d.window[d.windowEnd:], b) |
|
|
|
// Calculate 256 hashes at the time (more L1 cache hits) |
|
loops := (n + 256 - minMatchLength) / 256 |
|
for j := 0; j < loops; j++ { |
|
startindex := j * 256 |
|
end := startindex + 256 + minMatchLength - 1 |
|
if end > n { |
|
end = n |
|
} |
|
tocheck := d.window[startindex:end] |
|
dstSize := len(tocheck) - minMatchLength + 1 |
|
|
|
if dstSize <= 0 { |
|
continue |
|
} |
|
|
|
dst := s.hashMatch[:dstSize] |
|
bulkHash4(tocheck, dst) |
|
var newH uint32 |
|
for i, val := range dst { |
|
di := i + startindex |
|
newH = val & hashMask |
|
// Get previous value with the same hash. |
|
// Our chain should point to the previous value. |
|
s.hashPrev[di&windowMask] = s.hashHead[newH] |
|
// Set the head of the hash chain to us. |
|
s.hashHead[newH] = uint32(di + s.hashOffset) |
|
} |
|
s.hash = newH |
|
} |
|
// Update window information. |
|
d.windowEnd += n |
|
s.index = n |
|
} |
|
|
|
// Try to find a match starting at index whose length is greater than prevSize. |
|
// We only look at chainCount possibilities before giving up. |
|
// pos = s.index, prevHead = s.chainHead-s.hashOffset, prevLength=minMatchLength-1, lookahead |
|
func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) { |
|
minMatchLook := maxMatchLength |
|
if lookahead < minMatchLook { |
|
minMatchLook = lookahead |
|
} |
|
|
|
win := d.window[0 : pos+minMatchLook] |
|
|
|
// We quit when we get a match that's at least nice long |
|
nice := len(win) - pos |
|
if d.nice < nice { |
|
nice = d.nice |
|
} |
|
|
|
// If we've got a match that's good enough, only look in 1/4 the chain. |
|
tries := d.chain |
|
length = prevLength |
|
if length >= d.good { |
|
tries >>= 2 |
|
} |
|
|
|
wEnd := win[pos+length] |
|
wPos := win[pos:] |
|
minIndex := pos - windowSize |
|
|
|
for i := prevHead; tries > 0; tries-- { |
|
if wEnd == win[i+length] { |
|
n := matchLen(win[i:i+minMatchLook], wPos) |
|
|
|
if n > length && (n > minMatchLength || pos-i <= 4096) { |
|
length = n |
|
offset = pos - i |
|
ok = true |
|
if n >= nice { |
|
// The match is good enough that we don't try to find a better one. |
|
break |
|
} |
|
wEnd = win[pos+n] |
|
} |
|
} |
|
if i == minIndex { |
|
// hashPrev[i & windowMask] has already been overwritten, so stop now. |
|
break |
|
} |
|
i = int(d.state.hashPrev[i&windowMask]) - d.state.hashOffset |
|
if i < minIndex || i < 0 { |
|
break |
|
} |
|
} |
|
return |
|
} |
|
|
|
func (d *compressor) writeStoredBlock(buf []byte) error { |
|
if d.w.writeStoredHeader(len(buf), false); d.w.err != nil { |
|
return d.w.err |
|
} |
|
d.w.writeBytes(buf) |
|
return d.w.err |
|
} |
|
|
|
// hash4 returns a hash representation of the first 4 bytes |
|
// of the supplied slice. |
|
// The caller must ensure that len(b) >= 4. |
|
func hash4(b []byte) uint32 { |
|
b = b[:4] |
|
return hash4u(uint32(b[3])|uint32(b[2])<<8|uint32(b[1])<<16|uint32(b[0])<<24, hashBits) |
|
} |
|
|
|
// bulkHash4 will compute hashes using the same |
|
// algorithm as hash4 |
|
func bulkHash4(b []byte, dst []uint32) { |
|
if len(b) < 4 { |
|
return |
|
} |
|
hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 |
|
dst[0] = hash4u(hb, hashBits) |
|
end := len(b) - 4 + 1 |
|
for i := 1; i < end; i++ { |
|
hb = (hb << 8) | uint32(b[i+3]) |
|
dst[i] = hash4u(hb, hashBits) |
|
} |
|
} |
|
|
|
func (d *compressor) initDeflate() { |
|
d.window = make([]byte, 2*windowSize) |
|
d.byteAvailable = false |
|
d.err = nil |
|
if d.state == nil { |
|
return |
|
} |
|
s := d.state |
|
s.index = 0 |
|
s.hashOffset = 1 |
|
s.length = minMatchLength - 1 |
|
s.offset = 0 |
|
s.hash = 0 |
|
s.chainHead = -1 |
|
} |
|
|
|
// deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever, |
|
// meaning it always has lazy matching on. |
|
func (d *compressor) deflateLazy() { |
|
s := d.state |
|
// Sanity enables additional runtime tests. |
|
// It's intended to be used during development |
|
// to supplement the currently ad-hoc unit tests. |
|
const sanity = debugDeflate |
|
|
|
if d.windowEnd-s.index < minMatchLength+maxMatchLength && !d.sync { |
|
return |
|
} |
|
|
|
s.maxInsertIndex = d.windowEnd - (minMatchLength - 1) |
|
if s.index < s.maxInsertIndex { |
|
s.hash = hash4(d.window[s.index : s.index+minMatchLength]) |
|
} |
|
|
|
for { |
|
if sanity && s.index > d.windowEnd { |
|
panic("index > windowEnd") |
|
} |
|
lookahead := d.windowEnd - s.index |
|
if lookahead < minMatchLength+maxMatchLength { |
|
if !d.sync { |
|
return |
|
} |
|
if sanity && s.index > d.windowEnd { |
|
panic("index > windowEnd") |
|
} |
|
if lookahead == 0 { |
|
// Flush current output block if any. |
|
if d.byteAvailable { |
|
// There is still one pending token that needs to be flushed |
|
d.tokens.AddLiteral(d.window[s.index-1]) |
|
d.byteAvailable = false |
|
} |
|
if d.tokens.n > 0 { |
|
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
|
return |
|
} |
|
d.tokens.Reset() |
|
} |
|
return |
|
} |
|
} |
|
if s.index < s.maxInsertIndex { |
|
// Update the hash |
|
s.hash = hash4(d.window[s.index : s.index+minMatchLength]) |
|
ch := s.hashHead[s.hash&hashMask] |
|
s.chainHead = int(ch) |
|
s.hashPrev[s.index&windowMask] = ch |
|
s.hashHead[s.hash&hashMask] = uint32(s.index + s.hashOffset) |
|
} |
|
prevLength := s.length |
|
prevOffset := s.offset |
|
s.length = minMatchLength - 1 |
|
s.offset = 0 |
|
minIndex := s.index - windowSize |
|
if minIndex < 0 { |
|
minIndex = 0 |
|
} |
|
|
|
if s.chainHead-s.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy { |
|
if newLength, newOffset, ok := d.findMatch(s.index, s.chainHead-s.hashOffset, minMatchLength-1, lookahead); ok { |
|
s.length = newLength |
|
s.offset = newOffset |
|
} |
|
} |
|
if prevLength >= minMatchLength && s.length <= prevLength { |
|
// There was a match at the previous step, and the current match is |
|
// not better. Output the previous match. |
|
d.tokens.AddMatch(uint32(prevLength-3), uint32(prevOffset-minOffsetSize)) |
|
|
|
// Insert in the hash table all strings up to the end of the match. |
|
// index and index-1 are already inserted. If there is not enough |
|
// lookahead, the last two strings are not inserted into the hash |
|
// table. |
|
var newIndex int |
|
newIndex = s.index + prevLength - 1 |
|
// Calculate missing hashes |
|
end := newIndex |
|
if end > s.maxInsertIndex { |
|
end = s.maxInsertIndex |
|
} |
|
end += minMatchLength - 1 |
|
startindex := s.index + 1 |
|
if startindex > s.maxInsertIndex { |
|
startindex = s.maxInsertIndex |
|
} |
|
tocheck := d.window[startindex:end] |
|
dstSize := len(tocheck) - minMatchLength + 1 |
|
if dstSize > 0 { |
|
dst := s.hashMatch[:dstSize] |
|
bulkHash4(tocheck, dst) |
|
var newH uint32 |
|
for i, val := range dst { |
|
di := i + startindex |
|
newH = val & hashMask |
|
// Get previous value with the same hash. |
|
// Our chain should point to the previous value. |
|
s.hashPrev[di&windowMask] = s.hashHead[newH] |
|
// Set the head of the hash chain to us. |
|
s.hashHead[newH] = uint32(di + s.hashOffset) |
|
} |
|
s.hash = newH |
|
} |
|
|
|
s.index = newIndex |
|
d.byteAvailable = false |
|
s.length = minMatchLength - 1 |
|
if d.tokens.n == maxFlateBlockTokens { |
|
// The block includes the current character |
|
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
|
return |
|
} |
|
d.tokens.Reset() |
|
} |
|
} else { |
|
// Reset, if we got a match this run. |
|
if s.length >= minMatchLength { |
|
s.ii = 0 |
|
} |
|
// We have a byte waiting. Emit it. |
|
if d.byteAvailable { |
|
s.ii++ |
|
d.tokens.AddLiteral(d.window[s.index-1]) |
|
if d.tokens.n == maxFlateBlockTokens { |
|
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
|
return |
|
} |
|
d.tokens.Reset() |
|
} |
|
s.index++ |
|
|
|
// If we have a long run of no matches, skip additional bytes |
|
// Resets when s.ii overflows after 64KB. |
|
if s.ii > 31 { |
|
n := int(s.ii >> 5) |
|
for j := 0; j < n; j++ { |
|
if s.index >= d.windowEnd-1 { |
|
break |
|
} |
|
|
|
d.tokens.AddLiteral(d.window[s.index-1]) |
|
if d.tokens.n == maxFlateBlockTokens { |
|
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
|
return |
|
} |
|
d.tokens.Reset() |
|
} |
|
s.index++ |
|
} |
|
// Flush last byte |
|
d.tokens.AddLiteral(d.window[s.index-1]) |
|
d.byteAvailable = false |
|
// s.length = minMatchLength - 1 // not needed, since s.ii is reset above, so it should never be > minMatchLength |
|
if d.tokens.n == maxFlateBlockTokens { |
|
if d.err = d.writeBlock(&d.tokens, s.index, false); d.err != nil { |
|
return |
|
} |
|
d.tokens.Reset() |
|
} |
|
} |
|
} else { |
|
s.index++ |
|
d.byteAvailable = true |
|
} |
|
} |
|
} |
|
} |
|
|
|
func (d *compressor) store() { |
|
if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) { |
|
d.err = d.writeStoredBlock(d.window[:d.windowEnd]) |
|
d.windowEnd = 0 |
|
} |
|
} |
|
|
|
// fillWindow will fill the buffer with data for huffman-only compression. |
|
// The number of bytes copied is returned. |
|
func (d *compressor) fillBlock(b []byte) int { |
|
n := copy(d.window[d.windowEnd:], b) |
|
d.windowEnd += n |
|
return n |
|
} |
|
|
|
// storeHuff will compress and store the currently added data, |
|
// if enough has been accumulated or we at the end of the stream. |
|
// Any error that occurred will be in d.err |
|
func (d *compressor) storeHuff() { |
|
if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 { |
|
return |
|
} |
|
d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync) |
|
d.err = d.w.err |
|
d.windowEnd = 0 |
|
} |
|
|
|
// storeFast will compress and store the currently added data, |
|
// if enough has been accumulated or we at the end of the stream. |
|
// Any error that occurred will be in d.err |
|
func (d *compressor) storeFast() { |
|
// We only compress if we have maxStoreBlockSize. |
|
if d.windowEnd < len(d.window) { |
|
if !d.sync { |
|
return |
|
} |
|
// Handle extremely small sizes. |
|
if d.windowEnd < 128 { |
|
if d.windowEnd == 0 { |
|
return |
|
} |
|
if d.windowEnd <= 32 { |
|
d.err = d.writeStoredBlock(d.window[:d.windowEnd]) |
|
} else { |
|
d.w.writeBlockHuff(false, d.window[:d.windowEnd], true) |
|
d.err = d.w.err |
|
} |
|
d.tokens.Reset() |
|
d.windowEnd = 0 |
|
d.fast.Reset() |
|
return |
|
} |
|
} |
|
|
|
d.fast.Encode(&d.tokens, d.window[:d.windowEnd]) |
|
// If we made zero matches, store the block as is. |
|
if d.tokens.n == 0 { |
|
d.err = d.writeStoredBlock(d.window[:d.windowEnd]) |
|
// If we removed less than 1/16th, huffman compress the block. |
|
} else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) { |
|
d.w.writeBlockHuff(false, d.window[:d.windowEnd], d.sync) |
|
d.err = d.w.err |
|
} else { |
|
d.w.writeBlockDynamic(&d.tokens, false, d.window[:d.windowEnd], d.sync) |
|
d.err = d.w.err |
|
} |
|
d.tokens.Reset() |
|
d.windowEnd = 0 |
|
} |
|
|
|
// write will add input byte to the stream. |
|
// Unless an error occurs all bytes will be consumed. |
|
func (d *compressor) write(b []byte) (n int, err error) { |
|
if d.err != nil { |
|
return 0, d.err |
|
} |
|
n = len(b) |
|
for len(b) > 0 { |
|
d.step(d) |
|
b = b[d.fill(d, b):] |
|
if d.err != nil { |
|
return 0, d.err |
|
} |
|
} |
|
return n, d.err |
|
} |
|
|
|
func (d *compressor) syncFlush() error { |
|
d.sync = true |
|
if d.err != nil { |
|
return d.err |
|
} |
|
d.step(d) |
|
if d.err == nil { |
|
d.w.writeStoredHeader(0, false) |
|
d.w.flush() |
|
d.err = d.w.err |
|
} |
|
d.sync = false |
|
return d.err |
|
} |
|
|
|
func (d *compressor) init(w io.Writer, level int) (err error) { |
|
d.w = newHuffmanBitWriter(w) |
|
|
|
switch { |
|
case level == NoCompression: |
|
d.window = make([]byte, maxStoreBlockSize) |
|
d.fill = (*compressor).fillBlock |
|
d.step = (*compressor).store |
|
case level == ConstantCompression: |
|
d.w.logNewTablePenalty = 4 |
|
d.window = make([]byte, maxStoreBlockSize) |
|
d.fill = (*compressor).fillBlock |
|
d.step = (*compressor).storeHuff |
|
case level == DefaultCompression: |
|
level = 5 |
|
fallthrough |
|
case level >= 1 && level <= 6: |
|
d.w.logNewTablePenalty = 6 |
|
d.fast = newFastEnc(level) |
|
d.window = make([]byte, maxStoreBlockSize) |
|
d.fill = (*compressor).fillBlock |
|
d.step = (*compressor).storeFast |
|
case 7 <= level && level <= 9: |
|
d.w.logNewTablePenalty = 10 |
|
d.state = &advancedState{} |
|
d.compressionLevel = levels[level] |
|
d.initDeflate() |
|
d.fill = (*compressor).fillDeflate |
|
d.step = (*compressor).deflateLazy |
|
default: |
|
return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level) |
|
} |
|
d.level = level |
|
return nil |
|
} |
|
|
|
// reset the state of the compressor. |
|
func (d *compressor) reset(w io.Writer) { |
|
d.w.reset(w) |
|
d.sync = false |
|
d.err = nil |
|
// We only need to reset a few things for Snappy. |
|
if d.fast != nil { |
|
d.fast.Reset() |
|
d.windowEnd = 0 |
|
d.tokens.Reset() |
|
return |
|
} |
|
switch d.compressionLevel.chain { |
|
case 0: |
|
// level was NoCompression or ConstantCompresssion. |
|
d.windowEnd = 0 |
|
default: |
|
s := d.state |
|
s.chainHead = -1 |
|
for i := range s.hashHead { |
|
s.hashHead[i] = 0 |
|
} |
|
for i := range s.hashPrev { |
|
s.hashPrev[i] = 0 |
|
} |
|
s.hashOffset = 1 |
|
s.index, d.windowEnd = 0, 0 |
|
d.blockStart, d.byteAvailable = 0, false |
|
d.tokens.Reset() |
|
s.length = minMatchLength - 1 |
|
s.offset = 0 |
|
s.hash = 0 |
|
s.ii = 0 |
|
s.maxInsertIndex = 0 |
|
} |
|
} |
|
|
|
func (d *compressor) close() error { |
|
if d.err != nil { |
|
return d.err |
|
} |
|
d.sync = true |
|
d.step(d) |
|
if d.err != nil { |
|
return d.err |
|
} |
|
if d.w.writeStoredHeader(0, true); d.w.err != nil { |
|
return d.w.err |
|
} |
|
d.w.flush() |
|
d.w.reset(nil) |
|
return d.w.err |
|
} |
|
|
|
// NewWriter returns a new Writer compressing data at the given level. |
|
// Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression); |
|
// higher levels typically run slower but compress more. |
|
// Level 0 (NoCompression) does not attempt any compression; it only adds the |
|
// necessary DEFLATE framing. |
|
// Level -1 (DefaultCompression) uses the default compression level. |
|
// Level -2 (ConstantCompression) will use Huffman compression only, giving |
|
// a very fast compression for all types of input, but sacrificing considerable |
|
// compression efficiency. |
|
// |
|
// If level is in the range [-2, 9] then the error returned will be nil. |
|
// Otherwise the error returned will be non-nil. |
|
func NewWriter(w io.Writer, level int) (*Writer, error) { |
|
var dw Writer |
|
if err := dw.d.init(w, level); err != nil { |
|
return nil, err |
|
} |
|
return &dw, nil |
|
} |
|
|
|
// NewWriterDict is like NewWriter but initializes the new |
|
// Writer with a preset dictionary. The returned Writer behaves |
|
// as if the dictionary had been written to it without producing |
|
// any compressed output. The compressed data written to w |
|
// can only be decompressed by a Reader initialized with the |
|
// same dictionary. |
|
func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) { |
|
zw, err := NewWriter(w, level) |
|
if err != nil { |
|
return nil, err |
|
} |
|
zw.d.fillWindow(dict) |
|
zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method. |
|
return zw, err |
|
} |
|
|
|
// A Writer takes data written to it and writes the compressed |
|
// form of that data to an underlying writer (see NewWriter). |
|
type Writer struct { |
|
d compressor |
|
dict []byte |
|
} |
|
|
|
// Write writes data to w, which will eventually write the |
|
// compressed form of data to its underlying writer. |
|
func (w *Writer) Write(data []byte) (n int, err error) { |
|
return w.d.write(data) |
|
} |
|
|
|
// Flush flushes any pending data to the underlying writer. |
|
// It is useful mainly in compressed network protocols, to ensure that |
|
// a remote reader has enough data to reconstruct a packet. |
|
// Flush does not return until the data has been written. |
|
// Calling Flush when there is no pending data still causes the Writer |
|
// to emit a sync marker of at least 4 bytes. |
|
// If the underlying writer returns an error, Flush returns that error. |
|
// |
|
// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH. |
|
func (w *Writer) Flush() error { |
|
// For more about flushing: |
|
// http://www.bolet.org/~pornin/deflate-flush.html |
|
return w.d.syncFlush() |
|
} |
|
|
|
// Close flushes and closes the writer. |
|
func (w *Writer) Close() error { |
|
return w.d.close() |
|
} |
|
|
|
// Reset discards the writer's state and makes it equivalent to |
|
// the result of NewWriter or NewWriterDict called with dst |
|
// and w's level and dictionary. |
|
func (w *Writer) Reset(dst io.Writer) { |
|
if len(w.dict) > 0 { |
|
// w was created with NewWriterDict |
|
w.d.reset(dst) |
|
if dst != nil { |
|
w.d.fillWindow(w.dict) |
|
} |
|
} else { |
|
// w was created with NewWriter |
|
w.d.reset(dst) |
|
} |
|
} |
|
|
|
// ResetDict discards the writer's state and makes it equivalent to |
|
// the result of NewWriter or NewWriterDict called with dst |
|
// and w's level, but sets a specific dictionary. |
|
func (w *Writer) ResetDict(dst io.Writer, dict []byte) { |
|
w.dict = dict |
|
w.d.reset(dst) |
|
w.d.fillWindow(w.dict) |
|
}
|
|
|