Платформа ЦРНП "Мирокод" для разработки проектов
https://git.mirocod.ru
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
868 lines
22 KiB
868 lines
22 KiB
// Go support for Protocol Buffers - Google's data interchange format |
|
// |
|
// Copyright 2010 The Go Authors. All rights reserved. |
|
// https://github.com/golang/protobuf |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
package proto |
|
|
|
/* |
|
* Routines for decoding protocol buffer data to construct in-memory representations. |
|
*/ |
|
|
|
import ( |
|
"errors" |
|
"fmt" |
|
"io" |
|
"os" |
|
"reflect" |
|
) |
|
|
|
// errOverflow is returned when an integer is too large to be represented. |
|
var errOverflow = errors.New("proto: integer overflow") |
|
|
|
// ErrInternalBadWireType is returned by generated code when an incorrect |
|
// wire type is encountered. It does not get returned to user code. |
|
var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof") |
|
|
|
// The fundamental decoders that interpret bytes on the wire. |
|
// Those that take integer types all return uint64 and are |
|
// therefore of type valueDecoder. |
|
|
|
// DecodeVarint reads a varint-encoded integer from the slice. |
|
// It returns the integer and the number of bytes consumed, or |
|
// zero if there is not enough. |
|
// This is the format for the |
|
// int32, int64, uint32, uint64, bool, and enum |
|
// protocol buffer types. |
|
func DecodeVarint(buf []byte) (x uint64, n int) { |
|
// x, n already 0 |
|
for shift := uint(0); shift < 64; shift += 7 { |
|
if n >= len(buf) { |
|
return 0, 0 |
|
} |
|
b := uint64(buf[n]) |
|
n++ |
|
x |= (b & 0x7F) << shift |
|
if (b & 0x80) == 0 { |
|
return x, n |
|
} |
|
} |
|
|
|
// The number is too large to represent in a 64-bit value. |
|
return 0, 0 |
|
} |
|
|
|
// DecodeVarint reads a varint-encoded integer from the Buffer. |
|
// This is the format for the |
|
// int32, int64, uint32, uint64, bool, and enum |
|
// protocol buffer types. |
|
func (p *Buffer) DecodeVarint() (x uint64, err error) { |
|
// x, err already 0 |
|
|
|
i := p.index |
|
l := len(p.buf) |
|
|
|
for shift := uint(0); shift < 64; shift += 7 { |
|
if i >= l { |
|
err = io.ErrUnexpectedEOF |
|
return |
|
} |
|
b := p.buf[i] |
|
i++ |
|
x |= (uint64(b) & 0x7F) << shift |
|
if b < 0x80 { |
|
p.index = i |
|
return |
|
} |
|
} |
|
|
|
// The number is too large to represent in a 64-bit value. |
|
err = errOverflow |
|
return |
|
} |
|
|
|
// DecodeFixed64 reads a 64-bit integer from the Buffer. |
|
// This is the format for the |
|
// fixed64, sfixed64, and double protocol buffer types. |
|
func (p *Buffer) DecodeFixed64() (x uint64, err error) { |
|
// x, err already 0 |
|
i := p.index + 8 |
|
if i < 0 || i > len(p.buf) { |
|
err = io.ErrUnexpectedEOF |
|
return |
|
} |
|
p.index = i |
|
|
|
x = uint64(p.buf[i-8]) |
|
x |= uint64(p.buf[i-7]) << 8 |
|
x |= uint64(p.buf[i-6]) << 16 |
|
x |= uint64(p.buf[i-5]) << 24 |
|
x |= uint64(p.buf[i-4]) << 32 |
|
x |= uint64(p.buf[i-3]) << 40 |
|
x |= uint64(p.buf[i-2]) << 48 |
|
x |= uint64(p.buf[i-1]) << 56 |
|
return |
|
} |
|
|
|
// DecodeFixed32 reads a 32-bit integer from the Buffer. |
|
// This is the format for the |
|
// fixed32, sfixed32, and float protocol buffer types. |
|
func (p *Buffer) DecodeFixed32() (x uint64, err error) { |
|
// x, err already 0 |
|
i := p.index + 4 |
|
if i < 0 || i > len(p.buf) { |
|
err = io.ErrUnexpectedEOF |
|
return |
|
} |
|
p.index = i |
|
|
|
x = uint64(p.buf[i-4]) |
|
x |= uint64(p.buf[i-3]) << 8 |
|
x |= uint64(p.buf[i-2]) << 16 |
|
x |= uint64(p.buf[i-1]) << 24 |
|
return |
|
} |
|
|
|
// DecodeZigzag64 reads a zigzag-encoded 64-bit integer |
|
// from the Buffer. |
|
// This is the format used for the sint64 protocol buffer type. |
|
func (p *Buffer) DecodeZigzag64() (x uint64, err error) { |
|
x, err = p.DecodeVarint() |
|
if err != nil { |
|
return |
|
} |
|
x = (x >> 1) ^ uint64((int64(x&1)<<63)>>63) |
|
return |
|
} |
|
|
|
// DecodeZigzag32 reads a zigzag-encoded 32-bit integer |
|
// from the Buffer. |
|
// This is the format used for the sint32 protocol buffer type. |
|
func (p *Buffer) DecodeZigzag32() (x uint64, err error) { |
|
x, err = p.DecodeVarint() |
|
if err != nil { |
|
return |
|
} |
|
x = uint64((uint32(x) >> 1) ^ uint32((int32(x&1)<<31)>>31)) |
|
return |
|
} |
|
|
|
// These are not ValueDecoders: they produce an array of bytes or a string. |
|
// bytes, embedded messages |
|
|
|
// DecodeRawBytes reads a count-delimited byte buffer from the Buffer. |
|
// This is the format used for the bytes protocol buffer |
|
// type and for embedded messages. |
|
func (p *Buffer) DecodeRawBytes(alloc bool) (buf []byte, err error) { |
|
n, err := p.DecodeVarint() |
|
if err != nil { |
|
return nil, err |
|
} |
|
|
|
nb := int(n) |
|
if nb < 0 { |
|
return nil, fmt.Errorf("proto: bad byte length %d", nb) |
|
} |
|
end := p.index + nb |
|
if end < p.index || end > len(p.buf) { |
|
return nil, io.ErrUnexpectedEOF |
|
} |
|
|
|
if !alloc { |
|
// todo: check if can get more uses of alloc=false |
|
buf = p.buf[p.index:end] |
|
p.index += nb |
|
return |
|
} |
|
|
|
buf = make([]byte, nb) |
|
copy(buf, p.buf[p.index:]) |
|
p.index += nb |
|
return |
|
} |
|
|
|
// DecodeStringBytes reads an encoded string from the Buffer. |
|
// This is the format used for the proto2 string type. |
|
func (p *Buffer) DecodeStringBytes() (s string, err error) { |
|
buf, err := p.DecodeRawBytes(false) |
|
if err != nil { |
|
return |
|
} |
|
return string(buf), nil |
|
} |
|
|
|
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument. |
|
// If the protocol buffer has extensions, and the field matches, add it as an extension. |
|
// Otherwise, if the XXX_unrecognized field exists, append the skipped data there. |
|
func (o *Buffer) skipAndSave(t reflect.Type, tag, wire int, base structPointer, unrecField field) error { |
|
oi := o.index |
|
|
|
err := o.skip(t, tag, wire) |
|
if err != nil { |
|
return err |
|
} |
|
|
|
if !unrecField.IsValid() { |
|
return nil |
|
} |
|
|
|
ptr := structPointer_Bytes(base, unrecField) |
|
|
|
// Add the skipped field to struct field |
|
obuf := o.buf |
|
|
|
o.buf = *ptr |
|
o.EncodeVarint(uint64(tag<<3 | wire)) |
|
*ptr = append(o.buf, obuf[oi:o.index]...) |
|
|
|
o.buf = obuf |
|
|
|
return nil |
|
} |
|
|
|
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument. |
|
func (o *Buffer) skip(t reflect.Type, tag, wire int) error { |
|
|
|
var u uint64 |
|
var err error |
|
|
|
switch wire { |
|
case WireVarint: |
|
_, err = o.DecodeVarint() |
|
case WireFixed64: |
|
_, err = o.DecodeFixed64() |
|
case WireBytes: |
|
_, err = o.DecodeRawBytes(false) |
|
case WireFixed32: |
|
_, err = o.DecodeFixed32() |
|
case WireStartGroup: |
|
for { |
|
u, err = o.DecodeVarint() |
|
if err != nil { |
|
break |
|
} |
|
fwire := int(u & 0x7) |
|
if fwire == WireEndGroup { |
|
break |
|
} |
|
ftag := int(u >> 3) |
|
err = o.skip(t, ftag, fwire) |
|
if err != nil { |
|
break |
|
} |
|
} |
|
default: |
|
err = fmt.Errorf("proto: can't skip unknown wire type %d for %s", wire, t) |
|
} |
|
return err |
|
} |
|
|
|
// Unmarshaler is the interface representing objects that can |
|
// unmarshal themselves. The method should reset the receiver before |
|
// decoding starts. The argument points to data that may be |
|
// overwritten, so implementations should not keep references to the |
|
// buffer. |
|
type Unmarshaler interface { |
|
Unmarshal([]byte) error |
|
} |
|
|
|
// Unmarshal parses the protocol buffer representation in buf and places the |
|
// decoded result in pb. If the struct underlying pb does not match |
|
// the data in buf, the results can be unpredictable. |
|
// |
|
// Unmarshal resets pb before starting to unmarshal, so any |
|
// existing data in pb is always removed. Use UnmarshalMerge |
|
// to preserve and append to existing data. |
|
func Unmarshal(buf []byte, pb Message) error { |
|
pb.Reset() |
|
return UnmarshalMerge(buf, pb) |
|
} |
|
|
|
// UnmarshalMerge parses the protocol buffer representation in buf and |
|
// writes the decoded result to pb. If the struct underlying pb does not match |
|
// the data in buf, the results can be unpredictable. |
|
// |
|
// UnmarshalMerge merges into existing data in pb. |
|
// Most code should use Unmarshal instead. |
|
func UnmarshalMerge(buf []byte, pb Message) error { |
|
// If the object can unmarshal itself, let it. |
|
if u, ok := pb.(Unmarshaler); ok { |
|
return u.Unmarshal(buf) |
|
} |
|
return NewBuffer(buf).Unmarshal(pb) |
|
} |
|
|
|
// DecodeMessage reads a count-delimited message from the Buffer. |
|
func (p *Buffer) DecodeMessage(pb Message) error { |
|
enc, err := p.DecodeRawBytes(false) |
|
if err != nil { |
|
return err |
|
} |
|
return NewBuffer(enc).Unmarshal(pb) |
|
} |
|
|
|
// DecodeGroup reads a tag-delimited group from the Buffer. |
|
func (p *Buffer) DecodeGroup(pb Message) error { |
|
typ, base, err := getbase(pb) |
|
if err != nil { |
|
return err |
|
} |
|
return p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), true, base) |
|
} |
|
|
|
// Unmarshal parses the protocol buffer representation in the |
|
// Buffer and places the decoded result in pb. If the struct |
|
// underlying pb does not match the data in the buffer, the results can be |
|
// unpredictable. |
|
func (p *Buffer) Unmarshal(pb Message) error { |
|
// If the object can unmarshal itself, let it. |
|
if u, ok := pb.(Unmarshaler); ok { |
|
err := u.Unmarshal(p.buf[p.index:]) |
|
p.index = len(p.buf) |
|
return err |
|
} |
|
|
|
typ, base, err := getbase(pb) |
|
if err != nil { |
|
return err |
|
} |
|
|
|
err = p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), false, base) |
|
|
|
if collectStats { |
|
stats.Decode++ |
|
} |
|
|
|
return err |
|
} |
|
|
|
// unmarshalType does the work of unmarshaling a structure. |
|
func (o *Buffer) unmarshalType(st reflect.Type, prop *StructProperties, is_group bool, base structPointer) error { |
|
var state errorState |
|
required, reqFields := prop.reqCount, uint64(0) |
|
|
|
var err error |
|
for err == nil && o.index < len(o.buf) { |
|
oi := o.index |
|
var u uint64 |
|
u, err = o.DecodeVarint() |
|
if err != nil { |
|
break |
|
} |
|
wire := int(u & 0x7) |
|
if wire == WireEndGroup { |
|
if is_group { |
|
return nil // input is satisfied |
|
} |
|
return fmt.Errorf("proto: %s: wiretype end group for non-group", st) |
|
} |
|
tag := int(u >> 3) |
|
if tag <= 0 { |
|
return fmt.Errorf("proto: %s: illegal tag %d (wire type %d)", st, tag, wire) |
|
} |
|
fieldnum, ok := prop.decoderTags.get(tag) |
|
if !ok { |
|
// Maybe it's an extension? |
|
if prop.extendable { |
|
if e := structPointer_Interface(base, st).(extendableProto); isExtensionField(e, int32(tag)) { |
|
if err = o.skip(st, tag, wire); err == nil { |
|
ext := e.ExtensionMap()[int32(tag)] // may be missing |
|
ext.enc = append(ext.enc, o.buf[oi:o.index]...) |
|
e.ExtensionMap()[int32(tag)] = ext |
|
} |
|
continue |
|
} |
|
} |
|
// Maybe it's a oneof? |
|
if prop.oneofUnmarshaler != nil { |
|
m := structPointer_Interface(base, st).(Message) |
|
// First return value indicates whether tag is a oneof field. |
|
ok, err = prop.oneofUnmarshaler(m, tag, wire, o) |
|
if err == ErrInternalBadWireType { |
|
// Map the error to something more descriptive. |
|
// Do the formatting here to save generated code space. |
|
err = fmt.Errorf("bad wiretype for oneof field in %T", m) |
|
} |
|
if ok { |
|
continue |
|
} |
|
} |
|
err = o.skipAndSave(st, tag, wire, base, prop.unrecField) |
|
continue |
|
} |
|
p := prop.Prop[fieldnum] |
|
|
|
if p.dec == nil { |
|
fmt.Fprintf(os.Stderr, "proto: no protobuf decoder for %s.%s\n", st, st.Field(fieldnum).Name) |
|
continue |
|
} |
|
dec := p.dec |
|
if wire != WireStartGroup && wire != p.WireType { |
|
if wire == WireBytes && p.packedDec != nil { |
|
// a packable field |
|
dec = p.packedDec |
|
} else { |
|
err = fmt.Errorf("proto: bad wiretype for field %s.%s: got wiretype %d, want %d", st, st.Field(fieldnum).Name, wire, p.WireType) |
|
continue |
|
} |
|
} |
|
decErr := dec(o, p, base) |
|
if decErr != nil && !state.shouldContinue(decErr, p) { |
|
err = decErr |
|
} |
|
if err == nil && p.Required { |
|
// Successfully decoded a required field. |
|
if tag <= 64 { |
|
// use bitmap for fields 1-64 to catch field reuse. |
|
var mask uint64 = 1 << uint64(tag-1) |
|
if reqFields&mask == 0 { |
|
// new required field |
|
reqFields |= mask |
|
required-- |
|
} |
|
} else { |
|
// This is imprecise. It can be fooled by a required field |
|
// with a tag > 64 that is encoded twice; that's very rare. |
|
// A fully correct implementation would require allocating |
|
// a data structure, which we would like to avoid. |
|
required-- |
|
} |
|
} |
|
} |
|
if err == nil { |
|
if is_group { |
|
return io.ErrUnexpectedEOF |
|
} |
|
if state.err != nil { |
|
return state.err |
|
} |
|
if required > 0 { |
|
// Not enough information to determine the exact field. If we use extra |
|
// CPU, we could determine the field only if the missing required field |
|
// has a tag <= 64 and we check reqFields. |
|
return &RequiredNotSetError{"{Unknown}"} |
|
} |
|
} |
|
return err |
|
} |
|
|
|
// Individual type decoders |
|
// For each, |
|
// u is the decoded value, |
|
// v is a pointer to the field (pointer) in the struct |
|
|
|
// Sizes of the pools to allocate inside the Buffer. |
|
// The goal is modest amortization and allocation |
|
// on at least 16-byte boundaries. |
|
const ( |
|
boolPoolSize = 16 |
|
uint32PoolSize = 8 |
|
uint64PoolSize = 4 |
|
) |
|
|
|
// Decode a bool. |
|
func (o *Buffer) dec_bool(p *Properties, base structPointer) error { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
if len(o.bools) == 0 { |
|
o.bools = make([]bool, boolPoolSize) |
|
} |
|
o.bools[0] = u != 0 |
|
*structPointer_Bool(base, p.field) = &o.bools[0] |
|
o.bools = o.bools[1:] |
|
return nil |
|
} |
|
|
|
func (o *Buffer) dec_proto3_bool(p *Properties, base structPointer) error { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
*structPointer_BoolVal(base, p.field) = u != 0 |
|
return nil |
|
} |
|
|
|
// Decode an int32. |
|
func (o *Buffer) dec_int32(p *Properties, base structPointer) error { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
word32_Set(structPointer_Word32(base, p.field), o, uint32(u)) |
|
return nil |
|
} |
|
|
|
func (o *Buffer) dec_proto3_int32(p *Properties, base structPointer) error { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
word32Val_Set(structPointer_Word32Val(base, p.field), uint32(u)) |
|
return nil |
|
} |
|
|
|
// Decode an int64. |
|
func (o *Buffer) dec_int64(p *Properties, base structPointer) error { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
word64_Set(structPointer_Word64(base, p.field), o, u) |
|
return nil |
|
} |
|
|
|
func (o *Buffer) dec_proto3_int64(p *Properties, base structPointer) error { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
word64Val_Set(structPointer_Word64Val(base, p.field), o, u) |
|
return nil |
|
} |
|
|
|
// Decode a string. |
|
func (o *Buffer) dec_string(p *Properties, base structPointer) error { |
|
s, err := o.DecodeStringBytes() |
|
if err != nil { |
|
return err |
|
} |
|
*structPointer_String(base, p.field) = &s |
|
return nil |
|
} |
|
|
|
func (o *Buffer) dec_proto3_string(p *Properties, base structPointer) error { |
|
s, err := o.DecodeStringBytes() |
|
if err != nil { |
|
return err |
|
} |
|
*structPointer_StringVal(base, p.field) = s |
|
return nil |
|
} |
|
|
|
// Decode a slice of bytes ([]byte). |
|
func (o *Buffer) dec_slice_byte(p *Properties, base structPointer) error { |
|
b, err := o.DecodeRawBytes(true) |
|
if err != nil { |
|
return err |
|
} |
|
*structPointer_Bytes(base, p.field) = b |
|
return nil |
|
} |
|
|
|
// Decode a slice of bools ([]bool). |
|
func (o *Buffer) dec_slice_bool(p *Properties, base structPointer) error { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
v := structPointer_BoolSlice(base, p.field) |
|
*v = append(*v, u != 0) |
|
return nil |
|
} |
|
|
|
// Decode a slice of bools ([]bool) in packed format. |
|
func (o *Buffer) dec_slice_packed_bool(p *Properties, base structPointer) error { |
|
v := structPointer_BoolSlice(base, p.field) |
|
|
|
nn, err := o.DecodeVarint() |
|
if err != nil { |
|
return err |
|
} |
|
nb := int(nn) // number of bytes of encoded bools |
|
fin := o.index + nb |
|
if fin < o.index { |
|
return errOverflow |
|
} |
|
|
|
y := *v |
|
for o.index < fin { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
y = append(y, u != 0) |
|
} |
|
|
|
*v = y |
|
return nil |
|
} |
|
|
|
// Decode a slice of int32s ([]int32). |
|
func (o *Buffer) dec_slice_int32(p *Properties, base structPointer) error { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
structPointer_Word32Slice(base, p.field).Append(uint32(u)) |
|
return nil |
|
} |
|
|
|
// Decode a slice of int32s ([]int32) in packed format. |
|
func (o *Buffer) dec_slice_packed_int32(p *Properties, base structPointer) error { |
|
v := structPointer_Word32Slice(base, p.field) |
|
|
|
nn, err := o.DecodeVarint() |
|
if err != nil { |
|
return err |
|
} |
|
nb := int(nn) // number of bytes of encoded int32s |
|
|
|
fin := o.index + nb |
|
if fin < o.index { |
|
return errOverflow |
|
} |
|
for o.index < fin { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
v.Append(uint32(u)) |
|
} |
|
return nil |
|
} |
|
|
|
// Decode a slice of int64s ([]int64). |
|
func (o *Buffer) dec_slice_int64(p *Properties, base structPointer) error { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
|
|
structPointer_Word64Slice(base, p.field).Append(u) |
|
return nil |
|
} |
|
|
|
// Decode a slice of int64s ([]int64) in packed format. |
|
func (o *Buffer) dec_slice_packed_int64(p *Properties, base structPointer) error { |
|
v := structPointer_Word64Slice(base, p.field) |
|
|
|
nn, err := o.DecodeVarint() |
|
if err != nil { |
|
return err |
|
} |
|
nb := int(nn) // number of bytes of encoded int64s |
|
|
|
fin := o.index + nb |
|
if fin < o.index { |
|
return errOverflow |
|
} |
|
for o.index < fin { |
|
u, err := p.valDec(o) |
|
if err != nil { |
|
return err |
|
} |
|
v.Append(u) |
|
} |
|
return nil |
|
} |
|
|
|
// Decode a slice of strings ([]string). |
|
func (o *Buffer) dec_slice_string(p *Properties, base structPointer) error { |
|
s, err := o.DecodeStringBytes() |
|
if err != nil { |
|
return err |
|
} |
|
v := structPointer_StringSlice(base, p.field) |
|
*v = append(*v, s) |
|
return nil |
|
} |
|
|
|
// Decode a slice of slice of bytes ([][]byte). |
|
func (o *Buffer) dec_slice_slice_byte(p *Properties, base structPointer) error { |
|
b, err := o.DecodeRawBytes(true) |
|
if err != nil { |
|
return err |
|
} |
|
v := structPointer_BytesSlice(base, p.field) |
|
*v = append(*v, b) |
|
return nil |
|
} |
|
|
|
// Decode a map field. |
|
func (o *Buffer) dec_new_map(p *Properties, base structPointer) error { |
|
raw, err := o.DecodeRawBytes(false) |
|
if err != nil { |
|
return err |
|
} |
|
oi := o.index // index at the end of this map entry |
|
o.index -= len(raw) // move buffer back to start of map entry |
|
|
|
mptr := structPointer_NewAt(base, p.field, p.mtype) // *map[K]V |
|
if mptr.Elem().IsNil() { |
|
mptr.Elem().Set(reflect.MakeMap(mptr.Type().Elem())) |
|
} |
|
v := mptr.Elem() // map[K]V |
|
|
|
// Prepare addressable doubly-indirect placeholders for the key and value types. |
|
// See enc_new_map for why. |
|
keyptr := reflect.New(reflect.PtrTo(p.mtype.Key())).Elem() // addressable *K |
|
keybase := toStructPointer(keyptr.Addr()) // **K |
|
|
|
var valbase structPointer |
|
var valptr reflect.Value |
|
switch p.mtype.Elem().Kind() { |
|
case reflect.Slice: |
|
// []byte |
|
var dummy []byte |
|
valptr = reflect.ValueOf(&dummy) // *[]byte |
|
valbase = toStructPointer(valptr) // *[]byte |
|
case reflect.Ptr: |
|
// message; valptr is **Msg; need to allocate the intermediate pointer |
|
valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V |
|
valptr.Set(reflect.New(valptr.Type().Elem())) |
|
valbase = toStructPointer(valptr) |
|
default: |
|
// everything else |
|
valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V |
|
valbase = toStructPointer(valptr.Addr()) // **V |
|
} |
|
|
|
// Decode. |
|
// This parses a restricted wire format, namely the encoding of a message |
|
// with two fields. See enc_new_map for the format. |
|
for o.index < oi { |
|
// tagcode for key and value properties are always a single byte |
|
// because they have tags 1 and 2. |
|
tagcode := o.buf[o.index] |
|
o.index++ |
|
switch tagcode { |
|
case p.mkeyprop.tagcode[0]: |
|
if err := p.mkeyprop.dec(o, p.mkeyprop, keybase); err != nil { |
|
return err |
|
} |
|
case p.mvalprop.tagcode[0]: |
|
if err := p.mvalprop.dec(o, p.mvalprop, valbase); err != nil { |
|
return err |
|
} |
|
default: |
|
// TODO: Should we silently skip this instead? |
|
return fmt.Errorf("proto: bad map data tag %d", raw[0]) |
|
} |
|
} |
|
keyelem, valelem := keyptr.Elem(), valptr.Elem() |
|
if !keyelem.IsValid() { |
|
keyelem = reflect.Zero(p.mtype.Key()) |
|
} |
|
if !valelem.IsValid() { |
|
valelem = reflect.Zero(p.mtype.Elem()) |
|
} |
|
|
|
v.SetMapIndex(keyelem, valelem) |
|
return nil |
|
} |
|
|
|
// Decode a group. |
|
func (o *Buffer) dec_struct_group(p *Properties, base structPointer) error { |
|
bas := structPointer_GetStructPointer(base, p.field) |
|
if structPointer_IsNil(bas) { |
|
// allocate new nested message |
|
bas = toStructPointer(reflect.New(p.stype)) |
|
structPointer_SetStructPointer(base, p.field, bas) |
|
} |
|
return o.unmarshalType(p.stype, p.sprop, true, bas) |
|
} |
|
|
|
// Decode an embedded message. |
|
func (o *Buffer) dec_struct_message(p *Properties, base structPointer) (err error) { |
|
raw, e := o.DecodeRawBytes(false) |
|
if e != nil { |
|
return e |
|
} |
|
|
|
bas := structPointer_GetStructPointer(base, p.field) |
|
if structPointer_IsNil(bas) { |
|
// allocate new nested message |
|
bas = toStructPointer(reflect.New(p.stype)) |
|
structPointer_SetStructPointer(base, p.field, bas) |
|
} |
|
|
|
// If the object can unmarshal itself, let it. |
|
if p.isUnmarshaler { |
|
iv := structPointer_Interface(bas, p.stype) |
|
return iv.(Unmarshaler).Unmarshal(raw) |
|
} |
|
|
|
obuf := o.buf |
|
oi := o.index |
|
o.buf = raw |
|
o.index = 0 |
|
|
|
err = o.unmarshalType(p.stype, p.sprop, false, bas) |
|
o.buf = obuf |
|
o.index = oi |
|
|
|
return err |
|
} |
|
|
|
// Decode a slice of embedded messages. |
|
func (o *Buffer) dec_slice_struct_message(p *Properties, base structPointer) error { |
|
return o.dec_slice_struct(p, false, base) |
|
} |
|
|
|
// Decode a slice of embedded groups. |
|
func (o *Buffer) dec_slice_struct_group(p *Properties, base structPointer) error { |
|
return o.dec_slice_struct(p, true, base) |
|
} |
|
|
|
// Decode a slice of structs ([]*struct). |
|
func (o *Buffer) dec_slice_struct(p *Properties, is_group bool, base structPointer) error { |
|
v := reflect.New(p.stype) |
|
bas := toStructPointer(v) |
|
structPointer_StructPointerSlice(base, p.field).Append(bas) |
|
|
|
if is_group { |
|
err := o.unmarshalType(p.stype, p.sprop, is_group, bas) |
|
return err |
|
} |
|
|
|
raw, err := o.DecodeRawBytes(false) |
|
if err != nil { |
|
return err |
|
} |
|
|
|
// If the object can unmarshal itself, let it. |
|
if p.isUnmarshaler { |
|
iv := v.Interface() |
|
return iv.(Unmarshaler).Unmarshal(raw) |
|
} |
|
|
|
obuf := o.buf |
|
oi := o.index |
|
o.buf = raw |
|
o.index = 0 |
|
|
|
err = o.unmarshalType(p.stype, p.sprop, is_group, bas) |
|
|
|
o.buf = obuf |
|
o.index = oi |
|
|
|
return err |
|
}
|
|
|